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Clinical trials with HDAC
inhibitors (non-cancer)

* Phase | — Phenylbutyrate in Huntington'’s disease. 60 patients; 20 weeks.
* Phase | —Phenylbutyrate in Amyotrophic Lateral Sclerosis (ALS). 26 patients; 20 weeks.
* Phase | — Valproate in Spinal Muscular Atrophy (SMA). 33 patients; 6 months.

* Phase I/lla — Valproate and Phenylbutyrate in Spinal Muscular Atrophy (SMA). 10
patients; 14 weeks.

» Phase I/ll — Vorinostat (SAHA) in Niemann-Pick Disease. 15 patients; 3 months.
* Phase lla - FRM-0334 in Frontotemporal Dementia. 30 patients; 28 days.
* Phase Il — Valproate in Rubinstein-Taybi Syndrome. 60 children; 1 year.

* Phase | — 109 in Friedreich’s ataxia. 20 patients; 29 days.



Goals

« Understanding the role(s) of epigenetic modifications in
disease mechanisms and response to therapies.

- HDAC inhibitors in Huntington’s disease; preclinical studies from
mouse models.

 Discover how epigenetic analysis can be applied in
clinical trials to identify markers of response.

- HDAC inhibitors in Friedreich’s ataxia; clinical data from
patients.



HDAC inhibitors activate gene expression by
changing chromatin structure

Condensed chromatin

histone

> Decreased
transcription

HDAC inhibitors
(SAHA, phenylbutyrate, 4b)

Increased
transcription

Open chromatin

* Several neurodegenerative disorders are association with histone
hypoacetylation and altered gene expression, including Huntington’s disease



Huntington’s disease (HD)

« Caused by CAG repeat expansion in exon 1 of the HD gene, resulting in a
translated huntingtin protein with an expanded polyQ tract.

« Autosomal dominant; afflicts ~1 in 10,000 people.

« Obvious symptoms are random, uncontrollable movements called chorea, lack
of coordination, unsteady gait. Other cognitive and psychiatric symptoms are
often present.

« Hallmark feature of disease is the formation of huntingtin aggregates in the
brain.

« Largely adult-onset. Typically, patients live 15 years after diagnosis.

* No cure; no good therapies.

Human brain

mHD549 mHD549 - EM48

Mouse brain




Chromatin and gene expression abnormalities in HD

Log2 ratios:
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(Steffan et al., 2001; McCampbell et al., 2001; Cong et al.,

2005; Ferrante et al., 2003; Stack et al. 2007; Sadri-Vakili

et al., 2007; McFarland et al., 2012) (Luthi-Carter, 2000; Luthi-Carter, 2002; Chan et
al. 2002; Desplats et al., 2006; Hodges et al.,
2006; Kuhn et al., 2007; Friedrich et al., 2012)



Huntington’s disease is associated with a range
of chromatin/gene expression abnormalities

!

New targets for drug treatment are aimed at
correcting faulty transcription:
“histone deacetylase (HDAC) inhibitors”



Novel benzamide-type HDAC inhibitors
show low toxicity

Table 1. Activities and ICso values of HDAC inhibitors. Structures for each compound (numbers in bold) are
shown with corresponding transcriptional change in frataxin mRNA in the FRDA lymphoid cell line and 1Cso for
inhibition of histone deacetylation activity in a HeLa extract.
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1 Fold-change of frataxin mRNA in affected GM15850 cells, normalized to GAPDH mRNA, were determined in triplicate by real-time
quantitative RT-PCR after incubation with each compound at 5 uM for 96 h. Values are relative to untreated control cells.

2 |Cs0 values (in parenthesis below fold-change values) were determined by total histone deacetylation inhibition in a HeLa nuclear extract.

Herman et al., Nature Chem. Biol. 2:551-558, 2006
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Table 1. HDAC subtype selectivity profiles for the HDAC inhibitors tested in qPCR analysis (plus SAHA as a reference).
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HDACs 6, ©, and 10 were not tested.
* |Csp values for SAHA taken from Reaction Biology Corp (www.reactionbiology.com)
NS, non-selective. ND, not determined.

RepliGen A H et al., Neurobiol Dis. 2012; 46



Pipeline for screening novel HDAC1/3-targeting
inhibitors for Huntington’s disease

Library of ~100
novel HDAC
inhibitors
RepliGen

B:OMARIN

Compounds tested for
pharmacokinetics, cell permeability,
metabolic stability, receptor cross-
reactivity, cytotoxic properties, etc.

Striatal ell culture model Drosophila

N\ |

Mouse models (R6/2, N171-82Q, CAG140 KI)

- =) Investigational New

Drug (IND) Application




Selective HDAC1/3 inhibitors ameliorate disease
phenotypes in Huntington’s disease model systems

The HDAC inhibitor 4b ameliorates the disease
phenotype and transcriptional abnormalities in
Huntington's disease transgenic mice

Elizabeth A. Thomas*', Gicwanni Coppola®, Paula A. Desplats*, Bin Tang®, Elisabetta Soragni*, Ryan Burnett®,
Fuying Gao*, Kelsey M. Fitzgerald®, Jenna F. Borok®, David Herman®*, Daniel H. Geschwind®, and Joel M. Gottesfeld*

*De=partment im He 2012) 351-361
Cortents lists available at SciVerse Sciencelirect
Neurobiology of Disease

journal homepage: www.elsevier.com/locate /ynbdi

Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate
polyglutamine-elicited phenotypes in model systems of Huntington's disease

: Andrew C , Adeela Syed ®,
Judith Pu )
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Selective histone deacetylase (HDAC) inhibition
imparts beneficial effects in Huntington’s disease
mice: implications for the ubiquitin—proteasomal
and autophagy systems

Haiqun Jia', Ryan J. Kast!, Joan S. Steffan? and Elizabeth A. Thomas!*

"Depatment o 1 Institute, La Jolla, CA, USA and *Department of Psychiatry
and Human B . USA
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Gene expression signatures associated with
HDACi 4b treatment
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Thomas et al., PNAS USA 105:15564-9 (2008)



Histone modifications
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Benzamide-type HDAC inhibitors increase
histone acetylation at specific sites

4b inhibitor | 966 inhibitor
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HDACI 4b treatment reverses expression
downregulation coincident with increased histone

H3K9 acetylation at promoters of key genes

gPCR validation:
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HDACI 4b treatment reverses expression
downregulation coincident with increased histone
H3K9 acetylation at promoters of key genes

T Chromatin immunoprecipitation (ChlIP)
qPCR validation: for acetylated H3 (AcH3K?9):

Cwit - wehicle

wt - HDACH db
COHD - wehicle
mm HD - HDACH 4b

(Relative

Acetylated H3



HDAC1/3 inhibition alters the expression of DNA
methylation-related genes in WT and HD mouse brain

Table 1. gPCR validation of DNA methylation related genes altered by HDACi 4b treatment in cortex, striatum and muscle.
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Jia et al., PNAS, 112(1):E56-64, 2015



HDACIi 4b elicits DNA methylation changes in human
f ibroblasts- (Infinium HumanMethylation450 BeadChip)

WT1-Veh
WT2-Veh
WT3-Veh
Probe ID

Chr. Position
REFGENE ID
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*KDMGD: Lysine (K)-specific demethylase 5D

Jia et al., PNAS, 112(1):E56-64 2015



HDACI 4b elicits increased methylation at several
sites at the Kdm5d locus

MeDIP RT-PCR analysis
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Jia et al., PNAS, 112(1):E56-64 2015



Epigenetic markers of HDAC inhibition
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Goals

« Understanding the role(s) of epigenetic modifications in
disease mechanisms and response to therapies.

- HDAC inhibitors in Huntington’s disease; preclinical studies from
mouse models.

 Discover how epigenetic analysis can be applied in
clinical trials to identify markers of response.

- HDAC inhibitors in Friedreich’s ataxia; clinical data from
patients.



Friedreich’s ataxia (FRDA)

Caused by an expansion of a GAA triplet repeat in the first intron of the
FXN gene, which encodes the essential mitochondrial protein, frataxin.

Autosomal recessive, progressive neurological disease.

Most common form of hereditary ataxia, affecting about 1 in every 50,000
people in the United States.

Main symptom is impaired muscle coordination (ataxia); it can also lead to
scoliosis, heart disease and diabetes, but does not appreciably affect
cognitive function.

Symptoms typically begin between the ages of 5 and 15 years. Generally,
within 10 to 20 years after the appearance of the first symptoms, the
person is confined to a wheelchair.

No therapies that address pathology.



Friedreich’s ataxia (FRDA)

Normal FRDA Patient
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Novel HDACi 4b increases frataxin mRNA and protein in FRDA
patient lymphocytes/lymphoblastoid cell lines

gPCR for frataxin mRNA Western blot for frataxin protein

4b
Carrier D Affected J Affected M

Frataxin QN —

Actin s S S
(uM) 2.5 50 25

ChlIP at the FXN locus

mGM15851 - Normal
m GM15850 - FRDA
o GM15850 + 4b

Relative FXN mBNA

3*5':.[}"5 220U f 5 255.07.5 (UM
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Relative recovery

Reversal of the transcription defect
to at least carrier status

K9ac Kidac Kbac KBac Ki12ac KiBac
H3 H4

Herman et al., Nature Chem. Biol. 2:551-558, 2006




HDAC inhibitor effect on gene expression profiles in
cultured peripheral blood mononuclear cells (PBMCs)
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Coppola G, et al., Ann Neurol. 2011 70(5):790-804.
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Chromatin immunoprecipitation experiments identify
key residues for FXN activation

PBMCs

H3K9 H3K14 H4K5  H4K8 H4K12 H4K16

iPSc-derived Neuronal cells

H3K9ac H3K14ac H4K5ac H4K8ac H4K12acH4K16ac

= DMSO
™ 109
W 233
M 966

= DMSO
™ 109
W 233
™ 966

ChIP experiments demonstrate that
H3K9 and H4KS8 are critical residues
for FXN gene activation. These
could be used as a biomarker in
FRDA patient trials.



RG2833 (109): First in patient clinical
study

TABLE 1

San Luigi Gonzaga Hospital,
University of Turin, Italy.

Demographic and Clinical Characteristics of Study Subjects

22 patients (split into 4 cohorts
receiving different doses: 30-180

mg).
Biomarker measures:

— Frataxin mRNA and protein in
blood, PBMCs and buccal cells

— HDAC activity in PBMCs

— ChIP for H3K9 acetylation in
P B M CS F=female; FARS=Friedreich Ataxia Rating Scale; M=male




Frataxin protein and mRNA levels strongly correlated
in blood, PBMCs and buccal cells

PBMCs vs. whole blood
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PBMCs vs. buccal cells
buccal cells vs. whole
blood

Plasterer et al., PL0oS One. 2013; 8(5): e63958.



FXN mRNA in adult Friedreich ataxia patients
after oral administration of RG2833/109
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Increases in FXN mRNA in PBMCs from 5 patients after a
single dose (180 mg) of RG2833

Patient A Patient Z Patient K

-
T _—
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Increases in FXN mRNA observed in 9/10 patients overall




Increases in histone H3K9 acetylation in patient PBMCs
after a single dose (180 mgqg) of RG2833
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Increases in FXN mRNA and histone H3K9 acetylation
in patient PBMCs after two doses (120 mg) of RG2833
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Soragni et al., Annals of Neurology. 2014; 76(4):489-508



Summary

Preclinical studies from mice:
- Show good efficacy of HDAC1/3-targeting inhibitors in HD mouse models.

- HDACI 4b treatment is associated with a reversal of histone
hypoacetylation at H3K9 at the promoter of several candidate genes.

- DNA methylation may also prove useful as a marker of drug response.

In-patient clinical studies:

-Treatment with RG2833 was safe and well tolerated (at 180 mg or 120 mg
twice a day) and no drug related adverse effects were reported.

- Frataxin mRNA was increased in 9/10 patients and expression levels in
different cell types were correlated.

- ChIP promoter histone acetylation was increased in patient PBMCs after
single and multiple doses. H3K9 acetylation is a useful epigenetic biomarker
for drug response.

Second generation compounds with improved brain penetration and metabolic
stability have been generated. A clinical candidate from the new generation of
compounds will be taken forward for IND filing for a second round of clinical
trials.
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Microarray gene expression analysis

lllumina RefSeq-8
Beadchip

Expressionv. 1.0 lllumina BeadChip Human Arrays
arrays

Data Analysis




Using gene expression data for biomarker
identification in PBMCs
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