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Clinical trials with HDAC 
inhibitors (non-cancer)

• Phase I – Phenylbutyrate in Huntington’s disease.  60 patients; 20 weeks.

• Phase I  –Phenylbutyrate in Amyotrophic Lateral Sclerosis (ALS).  26 patients; 20 weeks.

• Phase I – Valproate in Spinal Muscular Atrophy (SMA).  33 patients; 6 months.

• Phase I/IIa – Valproate and Phenylbutyrate in Spinal Muscular Atrophy (SMA).  10 
patients; 14 weeks.

• Phase I/II – Vorinostat (SAHA) in Niemann-Pick Disease. 15 patients; 3 months.

• Phase IIa - FRM-0334 in Frontotemporal Dementia. 30 patients; 28 days.

• Phase II – Valproate in Rubinstein-Taybi Syndrome.  60 children; 1 year.

• Phase I – 109 in Friedreich’s ataxia.  20 patients; 29 days.



Goals

• Understanding the role(s) of epigenetic modifications in 

disease mechanisms and response to therapies.

- HDAC inhibitors in Huntington’s disease; preclinical studies from 

mouse models.

• Discover how epigenetic analysis can be applied in 

clinical trials to identify markers of response.

- HDAC inhibitors in Friedreich’s ataxia; clinical data from 

patients.



HDAC inhibitors activate gene expression by 
changing chromatin structure

* Several neurodegenerative disorders are association with histone 
hypoacetylation and altered gene expression, including Huntington’s disease
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Huntington’s disease (HD)
• Caused by CAG repeat expansion in exon 1 of the HD gene, resulting in a 

translated huntingtin protein with an expanded polyQ tract.

• Autosomal dominant;  afflicts ~1 in 10,000 people.

• Obvious symptoms are random, uncontrollable movements called chorea, lack 
of coordination, unsteady gait.  Other cognitive and psychiatric symptoms are 
often present. 

• Hallmark feature of disease is the formation of huntingtin aggregates in the 
brain.

• Largely adult-onset. Typically, patients live 15 years after diagnosis.

• No cure; no good therapies.  

Human brain Mouse brain



Chromatin and gene expression abnormalities in HD
Log2 ratios:
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Abnormal gene regulation

Abnormal gene expression(Steffan et al., 2001; McCampbell et al., 2001; Cong et al., 

2005; Ferrante et al., 2003; Stack et al. 2007; Sadri-Vakili 

et al., 2007; McFarland et al., 2012) (Luthi-Carter, 2000; Luthi-Carter, 2002; Chan et 

al. 2002; Desplats et al., 2006; Hodges et al., 
2006; Kuhn et al., 2007; Friedrich et al., 2012)



Huntington’s disease is associated with a range 
of chromatin/gene expression abnormalities

New targets for drug treatment are aimed at 

correcting faulty transcription:

“histone deacetylase (HDAC) inhibitors”



Herman et al., Nature Chem. Biol. 2:551-558, 2006

Novel benzamide-type HDAC inhibitors 
show low toxicity



Benzamide-type HDAC inhibitors preferentially 
target HDAC1 and/or HDAC3

Jia H et al., Neurobiol Dis. 2012; 46:351-61



Pipeline for screening novel HDAC1/3-targeting 
inhibitors for Huntington’s disease

Library of  ~100 

novel HDAC 

inhibitors

Striatal ell culture model Drosophila

Compounds tested for 

pharmacokinetics, cell permeability, 

metabolic stability, receptor cross-
reactivity, cytotoxic properties, etc.

Investigational New 

Drug (IND) Application
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Mouse models (R6/2, N171-82Q, CAG140 KI)



Selective HDAC1/3 inhibitors ameliorate disease 
phenotypes in Huntington’s disease model systems



Gene expression signatures associated with 
HDACi 4b treatment

Thomas et al., PNAS USA 105:15564-9 (2008)



Histone modifications



4b

Benzamide-type HDAC inhibitors increase 
histone acetylation at specific sites

Unpublished
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HDACi 4b treatment reverses expression 
downregulation coincident with increased histone 

H3K9 acetylation at promoters of key genes 

qPCR validation:



HDACi 4b treatment reverses expression 
downregulation coincident with increased histone 

H3K9 acetylation at promoters of key genes 

qPCR validation:
Chromatin immunoprecipitation (ChIP)

for acetylated H3 (AcH3K9):



HDAC1/3 inhibition alters the expression of DNA 
methylation-related genes in WT and HD mouse brain

Jia et al., PNAS, 112(1):E56-64, 2015

Table 1.  qPCR validation of DNA methylation related genes altered by HDACi 4b treatment in cortex, striatum and muscle. 

N171-82Q Cortex Striatum Muscle

Symbol: Entrez Gene Name: FC: p-val: FC: p-val: FC: p-val:

Dnmt1 DNA (cytosine-5-)-methyltransferase 1 0.91 0.140 0.90 0.143 1.61* 0.025

Dnmt3a DNA (cytosine-5-)-methyltransferase 3 alpha 0.94 0.330 1.40* 0.032 1.23* 0.011

Gadd45b Growth arrest and DNA-damage-inducible 45 beta 1.44* 0.049 1.01 0.460 0.96 0.338

Hdac1 histone deacetylase 1 0.81* 0.040 0.57* 0.011 0.81* 0.049

Hdac2 histone deacetylase 2 0.80 0.210 0.97 0.441 1.11 0.160

Hdac3 histone deacetylase 3 0.88 0.310 0.44* 0.031 0.98 0.437

Mbd3 methyl-CpG binding domain protein 3 1.57** 0.006 0.90 0.135 1.11 0.110

Mecp2 methyl CpG binding protein 2 (Rett syndrome) 0.97 0.890 1.05 0.360 1.21* 0.047

Parp1 Poly (ADP-ribose) polymerase family, member 1 1.41* 0.007 1.22 0.107 0.92 0.186

Rnf4 RING finger protein 4 1.11* 0.030 1.24* 0.035 0.87* 0.049

WT Cortex Striatum Muscle

Symbol: Entrez Gene Name: FC: p-val: FC: p-val: FC: p-val:

Dnmt1 DNA (cytosine-5-)-methyltransferase 1 1.00 0.48 0.98 0.43 0.79 0.13

Dnmt3A DNA (cytosine-5-)-methyltransferase 3 alpha 0.78 0.16 1.37* 0.03 0.90 0.21

Gadd45b Growth arrest and DNA-damage-inducible 45 beta 1.11 0.12 1.32* 0.03 0.92 0.31

Hdac1 histone deacetylase 1 0.90 0.29 0.97 0.40 0.98 0.45

Hdac2 histone deacetylase 2 0.98 0.46 1.09 0.26 1.12 0.12

Hdac3 histone deacetylase 3 0.90 0.31 1.26* 0.04 1.10 0.25

Mbd3 methyl-CpG binding domain protein 3 0.74** 0.01 0.94 0.31 0.91 0.33

Mecp2 methyl CpG binding protein 2 (Rett syndrome) 0.85 0.17 1.08 0.33 0.78 0.08

Parp1 Poly (ADP-ribose) polymerase family, member 1 1.25* 0.03 0.99 0.48 0.95 0.35

Rnf4 RING finger protein 4 1.07 0.20 1.11 0.28 0.86 0.13

Bold font indicates fold-change (FC) that was significantly different, as determined by Student's t test (unpaired; two-tailed).
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HDACi 4b elicits DNA methylation changes in human 
fibroblasts- (Infinium HumanMethylation450 BeadChip)

Jia et al., PNAS, 112(1):E56-64 2015

*KDM5D:  Lysine (K)-specific demethylase 5D



Kdm5d locus:
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MeDIP RT-PCR analysis 

HDACi 4b elicits increased methylation at several 
sites at the Kdm5d locus

Jia et al., PNAS, 112(1):E56-64 2015
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Goals

• Understanding the role(s) of epigenetic modifications in 

disease mechanisms and response to therapies.

- HDAC inhibitors in Huntington’s disease; preclinical studies from 

mouse models.

• Discover how epigenetic analysis can be applied in 

clinical trials to identify markers of response.

- HDAC inhibitors in Friedreich’s ataxia; clinical data from 

patients.



Friedreich’s ataxia (FRDA)
• Caused by an expansion of a GAA triplet repeat in the first intron of the 

FXN gene, which encodes the essential mitochondrial protein, frataxin.

• Autosomal recessive, progressive neurological disease.

• Most common form of hereditary ataxia, affecting about 1 in every 50,000 
people in the United States.

• Main symptom is impaired muscle coordination (ataxia); it can also lead to 
scoliosis, heart disease and diabetes, but does not appreciably affect 
cognitive function.

• Symptoms typically begin between the ages of 5 and 15 years. Generally, 
within 10 to 20 years after the appearance of the first symptoms, the 
person is confined to a wheelchair.

• No therapies that address pathology.
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Novel HDACi 4b increases frataxin mRNA and protein in FRDA 
patient lymphocytes/lymphoblastoid cell lines

Western blot for frataxin proteinqPCR for frataxin mRNA

Reversal of the transcription defect 

to at least carrier status

Herman et al., Nature Chem. Biol. 2:551-558, 2006

ChIP at the FXN locus
- Normal
- FRDA



HDAC inhibitor effect on gene expression profiles in 
cultured peripheral blood mononuclear cells (PBMCs)

Coppola G, et al., Ann Neurol. 2011 70(5):790-804.

77 gene 

biomarker 

panel

Dose-dependent increases in frataxin gene expression:
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ChIP experiments demonstrate that 

H3K9 and H4K8 are critical residues 

for FXN gene activation.  These 

could be used as a biomarker in 

FRDA patient trials.

Chromatin immunoprecipitation experiments identify 
key residues for FXN activation

iPSc-derived Neuronal cells



RG2833 (109):  First in patient clinical 

study

• San Luigi Gonzaga Hospital, 
University of Turin, Italy.

• 22 patients (split into 4 cohorts 
receiving different doses: 30-180 
mg).

• Biomarker measures:

– Frataxin mRNA and protein in 
blood, PBMCs and buccal cells

– HDAC activity in PBMCs

– ChIP for H3K9 acetylation in 
PBMCs



Frataxin protein and mRNA levels strongly correlated 
in blood, PBMCs and buccal cells

Plasterer et al., PLoS One. 2013; 8(5): e63958. 

PBMCs vs. whole blood

PBMCs vs. buccal cells 

buccal cells vs. whole 

blood

Frataxin mRNA vs. protein



FXN mRNA in adult Friedreich ataxia patients 
after oral administration of RG2833/109

Soragni et al., Ann Neurol. 2014; 76(4): 489–508



Increases in FXN mRNA in PBMCs from 5 patients after a 
single dose (180 mg) of RG2833

Increases in FXN mRNA observed in 9/10 patients overall  



Increases in histone H3K9 acetylation in patient PBMCs 
after a single dose (180 mg) of RG2833

Liz Soragni/TSRI



Increases in FXN mRNA and histone H3K9 acetylation 
in patient PBMCs after two doses (120 mg) of RG2833

Soragni et al., Annals of Neurology. 2014; 76(4):489-508 



Preclinical studies from mice: 

- Show good efficacy of HDAC1/3-targeting inhibitors in HD mouse models.

- HDACi 4b treatment is associated with a reversal of histone 

hypoacetylation at H3K9 at the promoter of several candidate genes.

- DNA methylation may also prove useful as a marker of drug response.

In-patient clinical studies:

-Treatment with RG2833 was safe and well tolerated (at 180 mg or 120 mg 

twice a day) and no drug related adverse effects were reported.

- Frataxin mRNA was increased in 9/10 patients and expression levels in 

different cell types were correlated.

- ChIP promoter histone acetylation was increased in patient PBMCs after 

single and multiple doses.  H3K9 acetylation is a useful epigenetic biomarker 

for drug response.

Second generation compounds with improved brain penetration and metabolic 

stability have been generated.  A clinical candidate from the new generation of 

compounds will be taken forward for IND filing for a second round of clinical 

trials.

Summary
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